
Verification and Validation of a Pressure Control
Unit for Hydraulic Systems

P. Boström∗, M. Heikkilä+, M. Huova+, M. Waldén∗ and M.
Linjama+

∗Åbo Akademi University, Finland
+Tampere University of Technology, Finland

October 16, 2014

1 / 21

Introduction

I Verification and validation of a pressure relief function for a
hydraulics system

I Demonstrates the techniques we have used to verify and
validate a complex cyber-physical system

I Verification of safety properties of the control software
I Automated formal verification
I Challenge: matrix calculations
I Tested two verification tools: Our tool VerSAA and Simulink

Design Verifier

I Model-based validation that the complete system fulfills safety
properties

I The system is too complex for formal verification (with
reasonable effort)

I Applied search-based testing where the search for bad
behaviour is formulated as an optimisation problem

2 / 21

Introduction

Case study

Verification of the control software

Model-based system validation

Conclusions

3 / 21

Digital hydraulics

I A pressure relief function is implemented as an add-on to a
main controller for a digital hydraulics system

I In a digital hydraulics system complex servo- or proportional
valves are replaced by simple on/off-valves connected in
parallell

I Valves are grouped into Digital Control Flow Units (DFCU:s)

4 / 21

The pressure relief function

I Here we only consider the A-chamber of the cylinder
I Idea: When the chamber pressure pA approaches the

maximum allowed pmax then more valves are opened on the
tank side until the pressure drops or all valves are open

I The flow QA through the DFCU is increased

I A valve configuration in a DFCU is represented by a vector u
containing 0:s and 1:s

I The goal of the controller is to choose the u that gives the
smallest flow rate u ∗ QT

max above a limit Q

5 / 21

The pressure relief algorithm

The limit Q for the flow rate that the pressure relief function
should provide is given as

Q =
pA − pc
pmax − pc

[1 1 1 1 1] ∗ QT
max

with zero point at pA = pc and pA = pmax requiring opening of all
valves

Pressure control algorithm

1. Determine a valve configuration utemp which is the possible
valve combination with minimal flow above the limit Q

2. Choose the output uout such that
uout = max(uin ∗ QT

max , utemp ∗ QT
max), where uin is the input

valve configuration to the pressure controller.

6 / 21

The possible valve combinations

The possible combinations the controller can choose from are given
by the rows in:

PossibleCombinations =



0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1



7 / 21

Simulation of the system

System behaviour without and with pressure relief functionality.
Maximum pressure pmax is set to 20 MPa

0 2 4 6
0

50

100

150

200

x
[m
m
]

Behaviorwithoutpressurerelief function

x
x
ref

0 2 4 6
0

20

40

60

p A
&
p B

[M
Pa
] p

A

p
B

t[s]

0 2 4 6
0

50

100

150

200
Behaviorwithpressurerelief function

x
x
ref

0 2 4 6
0

20

40

60
p
A

p
B

t[s]

8 / 21

Verification of the control software

I The control software was developed in Simulink together with
a simulation model of the plant.

I The pressure relief function is a subsystem in the complete
model

PRC

p_A

u_PA_in

u_AT_in

u_PA_out

u_AT_out

u_AT_out
2

u_PA_out
1

ZOH

Pressure controller

p_A

u_AT_in

u_AT_out
Filtering of pressure

p_A_in p_A_filtered

u_AT_in
3

u_PA_in
2

p_A
1

9 / 21

Verification of the control software

Safety properties for the control software were identified based on
the pressure relief concept.

The conditions for the subsystem PRC

I u PA out = u PA in

I If the filtered A-pressure is smaller than pc , then
u AT out = uAT in

I If the filtered A-pressure is greater than pmax , then
u AT out = [1 1 1 1 1] (i.e. all valves open)

I If the filtered A-pressure is between pc and pmax , the flow rate
of the output valves is at least the flow rate of the input
valves u AT in ∗ QT

max ≤ u AT out ∗ QT
max

10 / 21

Decomposition of properties

The correctness conditions can be decomposed as correctness
conditions for the internal subsystems

The conditions for the subsystem Pressure controller
I If pA is smaller than pc , then u AT out = u AT in

I If pA is greater than pmax , then u AT out = [1 1 1 1 1] (i.e. all
valves open)

I If pA is between pc and pmax , the flow rate over the output valves is at least the
flow rate of the input valves u AT in ∗ QT

max ≤ u AT out ∗ QT
max

The conditions for the subsystem Filtering of pressure
I . . .

11 / 21

Verification tools

We compared two tools to check the properties

VerSAA

I Developed at Åbo Akademi University

I Contracts suitable for assume-guarantee reasoning used for
specification

I Generates verification conditions that are discharged by the
SMT-solver Z3

Simulink Design Verifier

I Provided as a Simulink toolbox by Mathworks

I Properties to verify given as special verification blocks or
statements

I Based on k-induction and a SAT-solver provided by Prover Inc.

12 / 21

Contracts in VerSAA

The contract for the subsystem Pressure controller is given as:

contract :
inports :

p A : double;
u AT in : matrix(double, 1, 5)

outports :
u AT out : matrix(double, 1, 5)

requires : all(u AT in = 0||u AT in = 1)
ensures : all(u AT out = 0||u AT out = 1)
ensures : p A ≥ pmax ⇒ all(u AT out = 1)
ensures : p A < pc ⇒ all(u AT out = u AT in)
ensures : (p A ≥ pc&&p A < pmax)⇒

u AT in ∗ transpose(Qmax) ≤ u AT out ∗ transpose(Qmax)
end

13 / 21

Verification results

I Multi-rate subsystem with two sampling periods that consists
of 69 blocks

I Both tools could verify all 10 properties. Additionally, absence
of runtime errors such integer over and underflow, index out
of bounds and division by zero was proved

I VerSAA used 30 seconds while Simulink Design verifier used
11 minutes

I Simulink Design Verifier needs less user annotations due to
k-induction

I Both tools approximated floating-point numbers by infinite
precision rational numbers

14 / 21

Model-based system validation

After the software has been verified to satisfy its requirements, we
need to show that it actually serves its purpose

I The system model is an extremely complex hybrid system
(contains non-linear differential equations that do not even
have analytical solutions)

I Even if we manage to prove that the model is correct with
much effort, this does not necessarily hold for the real system

We have opted for using simulation-based testing to validate
system correctness

I Automatic search-based test generation approach to
automatically find test cases that expose flaws in the system

15 / 21

Search-based testing

I The idea is to formulate the problem of finding undesirable
behaviour as an optimisation problem

I Optimum of the cost function is the undesirable behaviour

I Typically the problems are non-convex and there are no
algorithms that are guaranteed to find the optimal solution

I Here we have applied genetic search algorithms, which have
been shown to find good solutions to hard optimisation
problems in practise

16 / 21

Search-based testing

I We are interested in testing quantitative aspects, i.e., how
high can the pressure become in the system

I The system is an open system with one input signal: the
piston reference position xref .

I The system has internal state - not sufficient to check
instantaneous input-output

I Hence, to create a test case we need to define xref over a time
interval.

I The reference position trajectory xref needs to be realistic, i.e.
a signal that can be encountered in the real system.

17 / 21

Input signal requirements

We have the requirements for all times t in a test

xmin ≤ xref (t) ≤ xmax

vmin ≤ dxref (t)
dt ≤ vmax

amin ≤ d2xref (t)
dt2 ≤ amax

(1)

or in a discrete form with sampling time Ts

xmin ≤ xref (Ts i) ≤ xmax

vmin ≤ ∆xref (Ts i)
Ts

≤ vmax

amin ≤ ∆2xref (Ts i)
T 2

s
≤ amax

(2)

18 / 21

Test generation algorithm

To get high pressures we need to have high speeds and
accelerations

Test generation algorithm

1. Pick k pivot elements where the xref has the value xmax

2. Solve the constraint system for vector xref so that each
element i satisfies the constraints in (2) and so that Σixref (i)
is minimised. This is a linear programming problem that
maximises the velocity and acceleration in xref within limits.

3. Simulate the complete system using the generated xref .

The positions of pivots are optimised by a genetic algorithm

19 / 21

Test generation results

Below are the maximum pressures in the A-side of the cylinder
found by testing using different acceleration and velocity limits.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

m

p A[M
Pa

]

1) max without PRC
2) max with PRC 1
3) max with PRC 2
4) max limit

The maximum pressure found without PRC is an unacceptable
56MPa, while the maximum pressure with PRC is an acceptable
25MPa

20 / 21

Conclusions

I Presented an approach to verification and model-based
validation of a pressure relief system

I A complex cyber-physical system

I Formal automated verification proved useful for checking that
the software fulfills certain correctness properties

I Search-based testing proved successful to find high pressure
peaks in the original system, and to show the improvement
obtained with the pressure relief function

I This does not prove absence of pressure peaks, but the
correctness proof of the software ensures that they will not be
caused by faulty software

21 / 21

	Introduction
	Case study
	Verification of the control software
	Model-based system validation
	Conclusions

