MODELLING RESILIENCE OF DATA
PROCESSING CAPABILITIES OF CPS

Linas Laibinis! , Dmitry Klionsky?,
Elena Troubitsyna!, Anatoly Dorokhov?,

Johan Lilius!, Mikhail Kupriyanov?

O
‘ 1Abo Akademi University, Finland
1 2St. Petersburg Electrotechnical University
® (SPbGETU TLETI"), Russia

MOTIVATION

Modern CPS should process large amount of data
with high speed and confidence

Need for dynamically scaling architectures

State-of-practice:

heuristics regarding the degree of parallelism versus
volume ratio

The impact of failure on the data processing is hard to
predict

Our aim is to study this aspect

via formal modelling of a reconfigurable dynamically
scaling systems in Event-B

Sensitivity analysis and assessment of the likelihood of
successful data processing under different parameters in
statistical Uppaal

TALK OUTLINE

Event-B

Modelling reconfigurable systems: refinement
strategy

Quantitative assessment in Uppaal-SMC

Discussion

FORMAL CORRECT-BY-CONSTRUCTION
DEVELOPMENT IN EVENT-B

o Modelling facilitates requirements

engineering and architecture
derivation Abstract model

o Explicit representation of fault
tolerance, resilience

) . Detailed model
o Model transformations under resilience

constraints: predictability, efficient
design space exploration, clean
architecture, robustness

Implementation
o Automated support for formal

verification

SYSTEM MODEL IN EVENT B

structure of system
(variables, invariants, events)

Machines contain the dynamic A

/

N
/
Machine
variables
invariants
theorems

events
variant

Contexts contain the

(constants and axioms)

o

static structure of system

~

/

Context

carrier sets
constants

axioms
theorems

Machines sees contexts

(GENERAL FORM OF A SPECIFICATION IN
EVENT-B

MACHINE

Machine Name
SETS

Definition of local types
CONSTANTS

Definition of abstract constants

VARIABLES

List of variables
INVARIANT

Typing of variables and other invariant properties of the machine
INITIALIZATION

Assignment of initial values to variables
EVENTS

EventName_1 = ...

EventName N = ...
END

MACHINE CONSISTENCY
Verify that

Well-definedness conditions are satistied
Initialization establishes invariant
Each event preserves invariant

Verification 1s done by proofs

Tool support — Rodin platform to generate
and discard proof obligations

THE RODIN PLATFORM

I rs= | Qur | 4+] vt v it @ | e e e [¥ Proving »
' Event-B Explorer % S0 @ Ticket (@ Ticket & = O & Outline ¥y Symbols = . =1
s EEeEd” MACHINE P e LN e = E g oa e
] @ Ticket nature: * = a ¥ 3 = 5 2 c g =
* i ancs_t2_prev VARIABLES wlelolelelel=lel=l=
+ i datemarkers sErve private » Wk o+ ® B - a4 & % .
F i3 ForagingAnts11 next private = ;4_1 ; ;1 : ; r: u! .
:ng::‘a INVARIANTS L v
Fgldm:r invl: serve & N not theorem -
» 1= leadersl inv2: next € N not theorem
*i=lyra inv3: serve = next not thearem -
F 1M _triples EVENTS
¥ = MathExtensions INITIALISATION: not extended ardinary group: --undefined-- --undefined-- internal -
* i Newlyra THEN
:gg:l:mm_uuﬂ actl: serve = @ -
* O Ticket act2: next = @ »
* 2 RailroadCrossing v1.1 END
F i ReplicationSystem-1 v.1.1
» = ReplicationSystem-2 v.1.1 serve_next: not extended ardinary group: --undefined-- narmal internal -
k= ReplicationSystem-3 v.1.1 WHERE
:::x::::_z grdl: serve < next not theorem
»LISHIELDS-2 THEN
3 Sluice actl: serve = serve + 1
¥ Sluice-3 END
i SndRev
¥ VendingMachine take_ticket: not extended ordinary group: --undefined-- normal internal -
iz \VendingMachine 2 '_fHEN
& VendingMachine-3 actl: next = next + 1 - New Events
END
Label Parameter identifier(s)
END . . r r "
ne_customer | | | |
Guard label(s) Guard predicate(s)
grdl 'serve = next |not theorem |
grd2 | | not theorem
grd3 I ot theorem
Action label{s) Action substitution(s)
actl [|
act2 |
act3 |
|2 Rodin Problems | Properties %) Tasks | =0
Property <4 | Add | | MorePar. | MoreGrd. | | More Act. Cancel | OK] B

AUTOMATED DEVELOPMENT TOOL
SUPPORT: RODIN PLATFORM

Automates incremental formal development by
refinement-based model transformation;

Supports strong interplay between modelling and
verification;

Reactive: analysis tools are automatically invoked in the
background whenever a change in a model is made

The platform is extendable by plug-ins extending the
Event-B language and verification techniques

High degree of automation of verification efforts

Integrated environment for model creation, editing,
refinement, verification, animation etc.

DATA PROCESSING IN CPS

Data processing (sub)-system 1s an important
part of a wide class of CPS

Specific characteristics of data processing depend on
the nature of CPS

Typical steps:
receiving batches of data,
pre-processing them, (e.g., to filter our noise)

produce a compact data representation to be used as
an input for the control functions of CPS

CASE STUDY: FLOATING OIL REFINERY

Modelling and assessment of a multi-channel data
processing of acoustic data

Different modes of system operation
significantly varying data volumes to be processed.

The system relies on dynamic scaling of parallelism to
ensure the required performance.
The pressing demand to improve resilience

work on augmenting data processing with fault tolerance.

Result: complex dynamic behaviour with a tangled
control flow and intricate interplay between the
dynamic parallelism scaling and recofinguration

DATA PROCESSING: BASIC PROPERTIES

Timelines and resilience

Each data batch should be processed by a certain
deadline.

The steps of data processing are computationally-
Intensive

Reliance on parallel execution to meet the required
deadlines.

The volume of data to be processed varies

The system dynamically adjusts the degree of
parallelism to cope with it

Due to failures sometimes data processing might
fail

Guarantee certain probability of success per batch

SCOPE OF MODELLING

Ensuring the required data flow between the
computational steps of data processing

Associating specific computational steps with the
corresponding processing components

Orchestrating dynamic parallel execution of the data
transformation steps to achieve the adequate degree
of parallelisation

Modelling fault tolerance and reconfiguration
strategies that take into account component failures
and availability of the computational resources.

REFINEMENT STRATEGY

to model the required data flow

assoclate 1t with the involved computational
components

Introduce fault tolerance by reconfiguration

Model not the causes of failures but effect on the
execution flow

INITIAL MODEL

Abstract representation of cyclic behaviour
Data processing 1s done in one atomic step

Ensure that all the required data
transformations are executed (in the required
order) and comply with the desired algorithm.

Individual data transformation steps: abstract
functions that take data of one abstract type and
return the transformed data belonging to another
abstract type.

MODELLING PROCESSING FLOW

The data transformation steps are modelled as
the abstract functions 1n the CONTEXT under
the AXIOMS clause

Sequential step: Step2 € FP_Data + LF_Data

Step2 1s a partial function that takes the results
of the first transformation and produces the
result of the consequent transformation.

dom(Step2) = ran(Stepl)
states that the domain of this partial function is
all the data that can be produced by the previous

data transformation, modelled by the function
Stepl.

MODELLING PROCESSING FLOW

Modelling parallel steps:
Explicit introduction of data partitioning

Stepd € LF_Data + (M + W_Data)

The steps with parallelism can produce or accept
the data that are partitioned and can be assigned
to distinct components for processing.

The maximal number of such parallel executions
1s fully determined by the volume of the received
input data.

MODELLING PROCESSING FLOW

o The function M on input data and restricting the
allowed data partitioning

Vidata,l fdata- idata € Input_Data \ {NO_DATA} A
| fdata = Step2(Stepl(idata)) =
dom(Stepd(lfdata)) =1 .. M(idata)
Maxr_M e I,
Vidata- idata € Input_Data = M(idata) < Max_M
Vf,x- f € dom(Stepd) nx € dom(Stepd(f)) =
(Vz0- (x — x0) € Stepd(f) < Stepd(f)(x) = z0)

FURTHER REFINEMENTS

15t refinement: refinement of sequential steps:
new events stepl and step2 modelling these data
transformations and new variables outputStep 1
and outputStep2 storing the results of these

computations.

2nd refinement: refinement of parallel steps:
refinement of atomicity of events

FURTHER REFINEMENTS

o To guard against non-
termination, we define the
following variant
expression

1 .. M{idata) \ dom(outputStep3)

Event step3_partial =
Status convergent

any
idx
where
grdl : fstep?2 = TRUFE
grd2 : fstepd = FALSE
grd3 : idr € 1.. M(idata)

grdd : idr & dom(outpui Step3)
then

q actl ! outputStepd(idr) := Stepd(output Step2)(idr)
en
Event stepd =
when
grdl : fstep2 =TRUE
grd? : fstepd = FALSE
grd3 : dom(outputStepd) =1 .. M (idata)
then
actl : fstepd :=TRUFE

end

END

INTRODUCING FAULT TOLERANCE

Introducing representation of components

Explicit definition of the link between the computation and
the available components.

Master process -- an orchestrator — schedules the
computations to components

Reconfiguration.

The components change their availability status non-
deterministically.

Component is unavailable when it is either failed or does not
have the computational capacity

The scheduler detects component unavailability and
reconfigure the data processing control flow, 1.e., to
reassign the failed tasks to the available components.

FAULT TOLERANCE

Ensures that the reconfiguration will be
performed when there are the available
components

Reconfiguration delay is tolerable: the system
might become congested,

Then processing of the batched 1s aborted and
resources are released

NEED FOR QUANTITATIVE ASSESSMENT

Formal modelling helps to derive reconfigurable
dynamaically scalable architecture

Gives assurance regarding correctness of the
data flow processing

Need quantitative assessment of timeliness and
data processing success rate

MODELLING IN UPPAAL-SMC

id : id comp
A ASEEg Brgadca assgn|sd]!
mit availablefid] == 1 &&
. =0

< == INIT_DELAY

done_tasks < M &&

assigned_rasks <=
- dane tasks &4

¢ == PERIDD

=0

Done

I done_tasks == &

assigned_tasks < M - done_ tasks A%
f_dad = 0

assigned_tasks == M- done_tasks ||
n_ival == 10

tor id : id_comp

avai J.’_'JE id] == 2 &&
© < PERIOD
redlid|?

avadablefid] = 1,

i Cid camp

avaidablelid] == 7 &%

¢ < FERIOD

conffid]?
:":E;ufgdl =1._
=

n_avail+ +
T Ry e
: 1
[1
Lo \ -
Vo 1 c=0 !
[1 i H
II r| I;w ai :
L}] i
LT T Upavailable !

avallablelid] =
DLy nava-- o= MIN_DELAY
' reflid]!
assgnfid §
avadablefid] = 2, e -
assigned_tasks++, c={l
pw_ret

start

1
r o= TASK_TIME i
i
i

€ <= PER|OD+TASK_TIME
conifid]!
Done

c »= TASK_TIME
availablelid] = 1,
g_wa:l++.

one_tasks+ o,
u:lgn:d_ta:lu---.
c=0

MODELLING IN UPPAAL-SMC

Verified a number of time reachability properties,
considering different value combinations for
system parameters. All the verified properties
are of the form

Pr[< time_bound|(<> Master. Done)
The result 1s vue provaviivy vnav vae viaster

component eventually reaches the state

Master.Done (1.e., the state where all the parallel
task calculations are successfully completed)
within the given time bound.

PROBABILITY DISTRIBUTION FOR THE CASE
(SAMPLE 20000, N = 10)

Probability Distribution

0.072
0.064
0.056
0.048

gu.-m

£

20,032

=}

o.024
0.016
0.008

Bl probability
EJaverage

0
27 30 33 30 39 42 45 48 51 54 57 o0 63 66
run durathon in time
Runs: 4612 in total, 4609 displayed, 3 remaining.
Probability sums: 0.99935 displayed, 0.000650477 remaining.
Minimum, maximum, average: 274211, 67.54 14, 35.6614.

DISCUSSION

We demonstrated how to formally derive a
representation of dynamically scaling reconfigurable
architecture by refinement in Event-B

Refinement process allowed us to systematically
introduce the reconfiguration mechanisms

Improve system fault tolerance and resilience against
stress load and faults

An integration with the statistical model checking
allowed us to evaluate the likelihood of successful
completion of data processing by different deadlines
and under diffrent probabilities of failures.

